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A chaotic trajectory can be synchronized with a desired unstable orbit (chaotic, periodic, or fixed
point) by using a drive variable for which the response subsystem Lyapunov exponents (SLE’s) are nega-
tive. Unexpectedly, for the Lorenz and Réssler systems, the SLE’s obtained for synchronization with the
fixed point showed good agreement with those obtained for chaotic orbits. For the Duffing oscillator, a
similar agreement was found between the SLE’s of the chaotic orbit and those of the unstable period-six
orbit. It is conjectured that the SLE’s of the chaotic orbit retain a memory of the periods of the orbit’s

origin.

PACS number(s): 05.45.+b

The problem of the control of chaotic systems has re-
cently received much attention [1-4]. For a chaotic sys-
tem, a freely evolving trajectory cannot be reproduced
due to the sensitive dependence on initial conditions and
our inability to set the initial conditions precisely. The
control of chaos in this context consists of forcing the
system to a desired trajectory. Such a trajectory may be
chaotic or periodic. In the case of chaotic trajectories
Pecora and Carroll [1] have succeeded in forcing a
desired chaotic trajectory onto a system by using an ap-
propriate drive variable. They show that if the subsystem
Lyapunov exponents (SLE’s) corresponding to the
remaining or response variables are all negative, the sys-
tem settles down onto the desired chaotic trajectory.

It is also possible to envisage situations where it is
desirable to force a chaotic system onto one of its own
unstable periodic orbits for reasons of the enhancement
of system performance, or of the adaptability of the sys-
tem to varying performance requirements. Ott, Grebogi,
and Yorke have succeeded in forcing a system onto its
own unstable periodic orbits by making a set of small
time-dependent perturbations on the system parameters
in such a way that the desired periodic orbit is stabilized
[2,5,6].

It is reasonable to expect that the stabilization of un-
stable periodic orbits can be achieved by the method of
Pecora and Carroll [1], i.e., by driving the system by an
appropriate drive variable. We have found that this is
indeed the case. Again, as in the chaotic case [1], we find
that the only suitable drive variables are those for which
the subsystem Lyapunov exponents are all negative.

An interesting quantity in the above context is the
length of the transient required for synchronization with
the desired orbit. The length of the transient is con-
trolled by the value of the largest SLE for the desired or-
bit. If the desired orbits are of different types, i.e., fixed
point, periodic, or chaotic, the values of the total
Lyapunov exponents of the three types of orbit will be
quite distinct from each other. There is thus no a priori
reason to expect any correlation between the SLE’s or the
transient times for synchronization for the three types of
orbit.
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However, we observed a very interesting and unexpect-
ed phenomenon in the case of the Lorenz [7], Rossler [8],
and Duffing [9] systems. For the Lorenz and Rdssler sys-
tems the lengths of the transients required for settling
onto one of the unstable fixed points of the system and
onto the chaotic orbits could be predicted from the
knowledge of the SLE’s corresponding to the fixed point
alone. For each system a comparison of the SLE’s of the
chaotic orbits with the SLE’s of the relevant fixed points
showed very good agreement (see Table I). This was
startling in view of the fact that the total Lyapunov ex-
ponents of the fixed point and the chaotic orbit were
quite different. The agreement persisted for different
values of the system parameters. Additionally, the length
of the transient required for settling onto some of the un-
stable periodic orbits also appeared to be governed by the
SLE’s of the same fixed point, and these were in agree-
ment with the SLE’s of those unstable periodic orbits.
For the Duffing oscillator there was no agreement be-
tween the SLE’s of the fixed points and those of its chaot-
ic orbits. However, we found that there was good agree-
ment between the SLE’s of the unstable period-six orbit
[10] of the system and those of its chaotic orbits.

This leads us to speculate that the studied chaotic or-
bits of the Lorenz and Rossler systems have arisen out of
the instability of the fixed point and hence we see an
agreement between the SLE’s of the fixed point and those
of the chaotic orbits for these cases, whereas the chaotic
orbits of the Duffing system have come out of the insta-
bility of the period-six orbit, giving rise to an agreement
between the corresponding SLE’s. We thus conjecture
that the SLE’s of a given chaotic orbit retain the memory
of the unstable periods that are its origin.

The above ideas will be discussed in the con-
text of an autonomous n-dimensional dynamical system
u=f(u,u), where wu=(uy,...,u,) and f(u,u)
=(f(u,u), ..., [f,(u,u)) are n-dimensional vectors and
p is a set of parameters such that the system lies in the
chaotic regime. The desired unstable orbit may be chaot-
ic or periodic. It can be predetermined or obtained via a
coevolving system [1]. We start the procedure of syn-
chronization [3,4] by dividing the variables of the system
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into two subsystems, a drive subsystem u;=(u,...,u,,)
and a response subsystem u, =(u,, +1,...,u,) such that
u =(ugy,u,). The dynamics of each subsystem is governed
by

ug=/fqlug,u,pn), (M
ar =fr(ud’ur’.u’) . (2)

In order to lock the given system onto a given unstable
orbit O, start the evolution of the system with an initial
condition u’'=(ug,u,), which slightly deviates from the
desired orbit such that u;=u, but u,=u,+8u,. The
drive variable u; now evolves according to Eq. (1) and
the response variable evolves according to the equation

12,'=f,(ud,u,',‘u') . (3)

Thus the drive variables of the primed system are con-
tinuously set to the drive variables of the desired orbit
and the response variables are allowed to evolve freely.
The system will settle down onto the desired orbit, pro-
vided the drive variables are such that the SLE’s corre-
sponding to the response system are all negative [1]. The
SLE’s of the response system are given by the eigenvalues
(time averaged) of the (rn —m)X(n —m)-dimensional
response subsystem Jacobian matrix J, whose elements
are given by

_ Ofilug,u,,p)

- , Lj=m+1,...,n, )
Ou;

(J,);
where u,; are the values of the drive variables of the
desired trajectory. The length of the transient after
which the system settles down onto the desired orbit de-
pends on the value of the largest SLE of the response sys-
tem.

The simplest orbit by which the system can be driven is
by one of its own fixed points, say (uJ,u,*). The evolution
of the response system is governed by Eq. (3) with
uy=uj. The SLE’s of the response system are given by
the eigenvalues of Eq. (4), with u, replaced by u ;. If the
real parts of the eigenvalues of the above matrix are all
negative the system will synchronize with the fixed point
and u; will tend to u,* after an initial transient.

The total Lyapunov exponents for the fixed points and
the chaotic orbit are in general quite different. Also the
SLE’s clearly depend on the nature of the driving trajec-
tory. Hence a priori one might expect that the SLE’s of
the fixed point (and hence the time taken to synchronize
with the fixed point) probably do not have any correla-
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tion with those of the chaotic trajectories (and the tran-
sients to them), nor is any correlation expected for other
unstable periodic orbits. However, actual numerical
studies of the Lorenz and Rossler systems showed unex-
pected results.

We start with the analysis of the Lorenz [7] system for
the fixed points. The Lorenz equations have three possi-
ble fixed points given by x *=yp*=z*=0.0 (fixed point 1),
and x*=y*=1xVb(r —1), z*=r—1 (fixed points 2 and
3). The subsystem Lyapunov exponents for the three
fixed points calculated using the Jacobian matrix J, [Eq.
(4)] are listed in Table I for each possible drive variable.
It is clear from Table I that the SLE’s corresponding to
the x and y as the drive variables are negative for all the
three fixed points. Hence the system can be driven to any
of the three fixed points using x and y as the driven vari-
ables. However, one of the SLE’s is positive for the fixed
point 1 and is zero for fixed points 2 and 3, with z as the
drive variable. The system thus cannot be driven to the
fixed points' by a z drive.

As noted earlier, a quantity of obvious interest in the
present context is the transient time required for the sys-
tem to settle onto the fixed point. This will of course de-
pend on the drive variable. We study the time T required
for the system to approach within some small distance €
of the fixed point starting from some initial point. If ¢ is
the initial distance from the fixed point, then it is clear
that e=¢€yexp(AT), where A is the real part of the largest
subsystem Lyapunov exponent.

We study the transient required for settling onto the
fixed points 2 or 3 of the Lorenz attractor. We plot the
average length of the transient as a function of log,ye for
the drive variables x* and y* in Fig. 1. The average is
taken over 100 initial conditions for the parameter values
0=10, b=2£, and r=60. Using the slopes of the graph
and a conversion to natural logarithms it can be easily
seen that A/ = —1.83 for the drive x * and A{‘—‘ —2.85 for
the drive y. These values of the largest SLE are in good
agreement with those obtained analytically and listed in
Table 1.

We now study a completely distinct case, the transient
required for a chaotic orbit to synchronize with the
desired chaotic orbit of the system starting from a dis-
tinct initial condition. Again we plot the average length
of the transient as a function of log,y€ in Fig. 1, where the
average is again over 100 initial conditions for the same
values of parameter as the data for the fixed point above,
ie, 0=10, b=2%, and r=60. The slopes of the two
graphs give A; = —1.80 for the drive x and Aj;=—2.76

TABLE I. Subsystem Lyapunov exponents for the Lorenz attractor for different drive variables.

Fixed points 2,3
x¥*=p*=+Vb(r—1)

Fixed point 1

SLE’s for
0=10.0, r =60.0, b=2,

Drive x*=y*=z%=0 z¥=r—1 Fixed points 2,3 Chaotic orbit [1]
— b — —1)2— —_
x —b,—1 b—1+V(b 21) 4b(r—1) —1.83,—1.83 —1.81,—1.86
y —b,—0 —b,—0 —2.66,—10.0 —2.67,—9.99
—o—1+ 2 —
o= 1+V(o + 1 +do(r —1) 0,—(oc+1) 0,—11.0 0.0108, —11.01
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for the drive y. Again the values of the largest SLE’s ob-
tained from the graph are in good agreement with the
values obtained numerically for the chaotic orbit by
Pecora and Carroll [1].

We note an unexpected and interesting fact. The
SLE’s for settling onto the fixed point are almost the
same as the SLE’s for settling onto the chaotic orbit.
This is clear from a comparison of the plot of the average
transient versus log,,e for the fixed point and for the
chaotic orbit, as plotted in Fig. 1. This can also be
confirmed by an examination of Table I. We list the
SLE’s for the fixed points 2 and 3 for the parameter
values 0 =10, r =60, and b=2% in column 4 of Table I.
We also list the values of the SLE’s reported by Pecora
and Carroll [1] for the chaotic orbits at the same set of
parameter values in column 5 of Table I. The two sets of
values are in striking agreement [12]. We have checked
this remarkable agreement at several other sets of param-
eter values and found similar agreement in all the cases.
Thus it appears that the SLE’s of the above fixed points
govern the behavior of the chaotic orbits of the Lorenz
system.

We have carried out a similar analysis for the Rossler
attractor [8]. The Rossler system of equations has
the fixed _points z*=—yp* x*=-—agy*, and
y*=(—c+V'c>—4ab )/2a. The subsystem Lyapunov
exponents of this fixed points show that synchronization
is only possible for the drive variable y. The SLE’s
of the fixed point z*=—yp*x*=-—ay*, and
y*=(—c+V'c?>—4ab )/2a were found to match very
well with the SLE’s obtained from the plot of the tran-
sient time versus log;qe. The SLE’s for this fixed point
with @ =0.2, b =0.2, and ¢ =9.0 are (0.2, —8.99), (0.003,
—8.99) and (0.1, 0.1) for the drive variables x*, y*, and
z*, respectively. The corresponding SLE’s obtained nu-
merically for the chaotic orbits by Pecora and Carroll [1]
for the same values of the parameter are (0.2, —8.99),
(—0.056, —8.81), and (0.1, 0.1), respectively. We see a
good agreement between these sets of values. We also ob-
tained the plot of the average transient for the synchroni-
zation of chaotic orbits as a function of logy€, and the
value of the largest SLE obtained from this agreed very
well with the value of the largest SLE for the fixed point.
We have checked this agreement for several values of sys-
tem parameters and it holds well in all the cases. Thus
the SLE’s of one of the fixed points appear to govern the
behavior of the chaotic orbits for the Rdssler case as well.

The above analysis is for the simplest case of a periodic
orbit, i.e., a fixed point. We find that the qualitative
behavior observed for the fixed point goes over to the
periodic orbits. As an example, we consider the x %y orbit
of the Lorenz map. This orbit is stable in the region
r =99.98 to 100.795 (o =10, b=2%) and persists in an un-
stable form till r =47.5 [11]. We find that the length of
the average transient time required to settle down on the
orbit is almost independent of ». The plot of the average
transient time as a function of logy€, where € is the dis-
tance to which the orbit closure is checked, is a straight
line. For o=10, b=2%, and r=60, we obtain the
Lyapunov exponent A2 = —1.827 for the drive variable x,
and Ay =—2.77 for the drive variable y. We note that
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FIG. 1. Plot of average transient time T vs log,e for the
Lorenz attractor with =10, b =%, and r=60 driven by the
unstable fixed point with x*=—v'b(r —1) (hollow circles) and
y*=—Vv'b(r —1) (solid circles) as the drive variables. The tri-
angles and squares show the 7 values when driven by the chaot-
ic trajectory for the same parameter values and for x and y as

the drive variables, respectively.

the Lyapunov exponents for the fixed points 2 and 3 and
the periodic orbit agree with each other within our nu-
merical accuracy. Thus for the Lorenz case, the subsys-
tem Lyapunov exponents of the fixed point alone appear
to govern the behavior for locking onto the fixed point as
well as the chaotic orbits and at least some of the unsta-
ble periodic orbits. A similar result was obtained for the
unstable periodic orbits of the Réssler attractor.

Next we have investigated the Duffing oscillator [9];
x =y, )3=7x(l—x2)—7/y +fz, z=—owu, and u=owz.
This system has a cubic nonlinearity in the equations as
opposed to the quadratic nonlinearity of the Lorenz and
Rossler systems. We found a distinctly different
phenomenon in the case of the Duffing oscillator. (See
Table I1.) There was no agreement between the SLE’s of

TABLE II. Subsystem Lyapunov exponents (real part) for
the Duffing oscillator with ¥ =0.15, f =0.17, ®=0.833, and z
as the drive variable are given for the fixed points, period-six or-
bit, and chaotic orbit. The SLE’s for u as the drive variable are
the same as z as the drive variable. The SLE’s for x and y as the
drive variable are (—0.15, 0.0, 0.0) and (0.0, 0.0, 0.0), respective-
ly, for all the cases, i.e., the fixed points, period-six orbit, and
chaotic orbit.

Orbit SLE’s
Fixed point 1
x¥=p*=z*=y*= 0.636, 0.0, —0.786

Fixed points 2,3
x¥*==1, y*=z*=y*= 0.0, —0.075, —0.075

Period-six orbit 0.18, 0.0, —0.33

Chaotic orbit 0.10, 0.0, —0.25
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the fixed point of the Duffing system and those of its
chaotic orbits. On the other hand, we found that there
was reasonable agreement between the SLE’s of the un-
stable period-six orbit [10] of the system and those of its
chaotic orbits [13]. This can be seen from Table II,
which lists the SLE’s for the fixed points, the period-six
orbit, and the chaotic orbit for y=0.15, f£=0.17, and
©=0.833. We have checked this result for other values
of parameters as well.

We have thus demonstrated that it is possible to sta-
blize the unstable periodic orbits of a chaotic attractor by
driving with an appropriate drive variable. The choice of
drive variable is dictated by the values of the subsystem
Lyapunov exponents of the response system, as is the
length of the transient. For the Lorenz and Rossler sys-
tems, the SLE’s of some of the unstable fixed points ap-
peared to govern the locking to chaotic orbits and the
periodic orbits as well. On the other hand, the SLE’s of
the unstable period-six orbit appear to govern the proper-
ties of the chaotic orbit for the Duffing oscillator. It is in-
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teresting to note that the actual chaotic trajectories for
these systems seem to wind around the unstable fixed
points or the periodic orbits for which this agreement be-
tween the SLE’s is observed.

These results lead us to speculate that the studied
chaotic orbits of the Lorenz and Rd&ssler systems have
arisen out of the instability of the fixed point [14], and
hence we see an agreement between the SLE’s of the fixed
point and those of the chaotic orbits for these cases,
whereas the chaotic orbits of the Duffing system have
come out of the instability of the period-six orbit, giving
rise to an agreement between the corresponding SLE’s.
We thus conjecture that the SLE’s of a given chaotic or-
bit retain the memory of the unstable periods that are its
origin.
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